Assignment 8

This homework is due *Monday*, November 21.

There are total 45 points in this assignment. 35 points is considered 100%. If you go over 35 points, you will get over 100% for this homework (up to 115%) and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper. Your solutions should contain full proofs/calculations (unless stated otherwise in the problem). Bare answers will not earn you much.

This assignment covers sections 4.6–4.8 in O'Neill.

- (1) (4.6.2) Let $\alpha : [-1,1] \to \mathbb{R}^2$ be the curve segment given by $\alpha(t) = (t,t^2)$. (a) [2pt] If $\varphi = v^2 du + 2uv dv$, compute $\int_{\alpha} \varphi$.
 - (b) [3pt] Find a function f such that $df = \varphi$. Compute $\int_{\beta} \varphi$, where β is a straight line joining $\alpha(-1)$ and $\alpha(1)$. Compare to (a).
- (2) (4.6.3) Let φ be a 1-form on a surface M. Show:
 - (a) [3pt] If φ is closed, then $\int_{\partial \mathbf{x}} \varphi = 0$ for every 2-segment \mathbf{x} in M.
 - (b) [3pt] If φ is exact,

$$\int_{\alpha} \varphi = \sum_{i} \int_{\alpha_{i}} \varphi = 0$$

for any closed, piecewise smooth curve whose smooth segments are $\alpha_1, \alpha_2, \ldots, \alpha_k$. (In particular, α_k end point is the start point of α_1 .)

(3) (4.6.9) Let \mathbf{x} be the usual parametrization of the torus T:

 $\mathbf{x}(u,v) = ((R + r\cos u)\cos v, (R + r\cos u)\sin v, r\sin u).$

For integers m, n let α be the closed curve

$$\alpha(t) = \mathbf{x}(mt, nt) \quad (0 \le t \le 2\pi).$$

Find:

(a) [3pt] ∫_α ξ, where ξ is the 1-form such that ξ(**x**_u) = 1 and ξ(**x**_v) = 0.
(b) [3pt] ∫_α η, where η is the 1-form such that η(**x**_u) = 0 and η(**x**_v) = 1.

COMMENT. For an arbitrary closed curve γ on the torus, $\int_{\gamma} \xi/(2\pi)$ counts the number of turns around the torus the curve makes in direction of the parallels, and $\int_{\gamma} \eta/(2\pi)$ does the same for the meridians.

(4) (Simplified 4.7.9) Let φ be a *closed* 1-form and α be a closed curve.

- (a) [2pt] Show that if either φ is exact or α is homotopic to a constant, then $\int_{\alpha} \varphi = 0$.
- (b) [3pt] Deduce that on the torus T the meridians and parallels are not homotopic to constants, and the closed 1-forms ξ and η are not exact. (In particular, show that they are closed.)

$$-$$
 see next page $-$

- (5) [3pt] (4.7.3) Let $F: M \to N$ be a regular mapping. Prove that if N is orientable, then M is orientable. (*Hint:* Use the Pullback.)
- (6) [3pt] (4.8.1) Prove that a surface M is nonorientable if there is a smoothly closed curve $\alpha : [a,b] \to M$ (it means it is closed and $\alpha'(a) = \alpha'(b)$) and a tangent vector field Y on α such that
 - (i) Y and α' are linearly independent at every point, and
 - (ii) Y(b) = -Y(a).

(*Hint:* Assume M is orientable, and drag nonvanishing 2-form η computed on Y and α' along α . Keep track of sign of η .)

(7) (4.8.11) (*Plane with two origins*) Let Z consist of all ordered pairs of real numbers and one additional point $\mathbf{0}^*$. Let \mathbf{x} and \mathbf{y} be the functions from \mathbb{R}^2 to Z such that

$$\mathbf{x}(u, v) = \mathbf{y}(u, v) = (u, v)$$
 if $(u, v) \neq (0, 0)$,

but

$$\mathbf{x}(0,0) = \mathbf{0} = (0,0)$$
 and $\mathbf{y}(0,0) = \mathbf{0}^*$.

- (a) [3pt] Show that the abstract patches x and y constitute a patch collection that satisfies the first two conditions in the definition of (abstract) surface, but not the Hausdorff axiom.
 Without Hausdorff axiom, strange things happen. For example, prove
 - the following.
- (b) [3pt] A convergent sequence in Z can have two limits.
- (c) [3pt] The function $F: Z \to Z$ that reverses **0** and **0**^{*}, leaving all other points fixed, is a differentiable mapping.
- (8) (4.8.12)
 - (a) [4pt] Given a one-to-one function H from a manifold M onto an arbitrary set A, prove there is a unique way to make A a manifold so that H becomes a diffeomorphism. (*Hint:* Diffeomorphisms carry patches to patches. So since you need to produce a collection of patches in A, show that they must be images of patches in M under H.)
 - (b) [4pt] In each of the following cases, find natural choices of H and M that make the set a manifold.
 - (i) The set of all 2×2 real symmetric matrices.
 - (ii) The set of all circles in \mathbb{R}^2 .
 - (iii) The set of all great (largest) circles on a sphere Σ .
 - (iv) The set of all finite closed intervals of nonzero length in \mathbb{R} .